Probalisitic Closure

Paris Samuel Miles-Brenden

February 11, 2018

Lemma's and Prologue

1.) Decomposition of variant variables in chain like decomposition proceeds under the guidance of definitional attributes having to do with either given variable under equivalence of measure.

$$
\begin{align*}
& f(q):=\partial \int q(p) d p+\partial \int p(q) d q \tag{1}\\
& \quad:=g(p) d p \int p d q+\int d q:=p \tag{2}
\end{align*}
$$

2.) Measure of definition is defined by non-radical commensurability of conjunction of variant and deviant separability of variance integrated.

$$
\begin{gather*}
g(p):=\int f(q) d f+\partial g(q) \int d q \tag{3}\\
:=f(q) d q \partial p \tau(p) \tag{4}\\
\rightarrow \partial: \int \tag{5}\\
:=\int f(q) d f+\partial g(q) \int d q \tag{6}\\
+\partial f(q) \int d p+g(q) d g \tag{7}
\end{gather*}
$$

3.) Independent correlated measures depend on means and measures in such a manner that exchange of one for another is deterministic of partial and complete superposition of gross and minimal estimates.

$$
\begin{align*}
& \tau(p, q):=\int \partial f(p) d q-\partial g(q) d p \tag{8}\\
& :=\tau(p) \int \partial g(q) d p \int \partial f(q) d q \tag{9}\\
& :=\tau(p, q) \int \partial g(q) d p \int \partial f(p) d q \tag{10}
\end{align*}
$$

4.) Each of these variants then defines the relation to its conjugate form of which involution is defined for commensurate variables.

$$
\begin{equation*}
g(p): \partial: \int: f(q) d q \partial p \tau(p) \tag{11}
\end{equation*}
$$

5.) Correlation exists in a manner such that mixed measure, mode, and median are defined for any two variables; as variant deviant definition by way of dependent variable and gross and minimal measure.

$$
\begin{equation*}
g(p): p ; q: \int f(q) d f+\partial g(q) \int d q+\partial f(q) \int d p+\int g(q) d g \tag{12}
\end{equation*}
$$

Preliminary Observations

These three equations then define the notion of which is dependency between the variants the deviants and the correlation.

$$
\begin{gather*}
f(q):=\partial \int q(p) d p+\partial \int p(q) d q \tag{13}\\
=\int_{\tau} g(p) d q: \int p d q+\int_{\pi} d q \tag{14}\\
g(p):=\int_{\tau} f(q) d f+\partial g(q) \int_{\pi} d q \tag{15}\\
+\partial f(q) \int_{\pi} d p+\int_{\tau} g(q) d g \tag{16}\\
\tau(p, q):=\int \partial f(q) d q-\int \partial g(q) d p \tag{17}\\
=\tau(p, q) \int \partial g(q) d p \int \partial f(p) d q \tag{18}
\end{gather*}
$$

Closing Remarks:

"Mathematics and it's expression exists as an independent language through which to and as to express the universe; apart from physics or existential or through life."
This deserves comment; that mathematics is independent of reality; and as a given a relation of that of what has been or does as relate to the given of that through which we learn expression of the world around us; language departed.
1.) $d \partial$ on τ is no π
2.) ∂ as f is no \int
3.) \int as g is no ∂
4.) π as no τ is:

As these are true the following holds true:

$$
\begin{gather*}
f(q):=\partial q(p) d p+\partial \int p(q) d q \tag{19}\\
:=g(p) d p \int p d q+\int d q:=p \tag{20}\\
g(p):=\int_{\tau} f(q) d f+\partial g(q) \int_{\pi} d q \tag{21}\\
:=f(q) d q \partial p \tau(p) \rightarrow \partial: \int \tag{22}\\
\tau(p, q):=\int \partial f(q) d q-\int \partial g(q) d p \tag{23}\\
:=\tau(p) \int \partial g(q) d p \int \partial f(q) d q \tag{24}
\end{gather*}
$$

True: as $d \partial$ on $\tau(p)$ in $g(p)$ (2) as τ on (1) is only complete as no π. True: as ∂ such that \int is complete as π of f with g as no τ of q of p. Therefore: no inequivalence of $\int \partial$.

$$
\begin{equation*}
f(q) d q \partial p \tau(p) \rightarrow \partial: \int \quad \text { of } \quad g(p) \tag{25}
\end{equation*}
$$

\&

$$
\begin{equation*}
\partial: \int f(q) d q \partial p \tau(p) \tag{26}
\end{equation*}
$$

of

$$
\begin{equation*}
\int_{\tau} f(q) d f+\partial g(p) \int_{\pi}^{g(p)} d q+\partial f(q) \int_{\pi} d q+\tau g(q) d g \tag{27}
\end{equation*}
$$

of

$$
\begin{equation*}
g(p) \tag{29}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
\int_{\tau} f(q) d f+\int_{\tau} g(q) d g+\partial f(q) \int_{\pi} d p+\int_{\pi} q(p) \tag{30}
\end{equation*}
$$

Therefore any particle relation of the given nome for the given struct of a defined relation so under insertion is entirely valid at any given point of inclusion or departure; in a said relation or notion; for as a given each does so as relate seamlessly to each; one; entire and valid; as the relation cannot be in departure from a given return, notion, departure, or structure; in literal; or persistent tense; no validity would otherwise defined; as for the completion that is one; as one relation of ordinancy and permanence for each given. There is then no 'two' as defined but under relative terms for which any given third point is independent of given relation of each such independent notions of two said full relations of equivalent emptiness.

